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Abstract

The mapping of a rotational dynamics on a harmonic oscillator one is considered. The

method is used for studying the stabilization of the rigid top rotation around the intermediate

moment of inertia axis by orbiting particle.

1 Introduction

The quantum rotation is a specific type of excitation of microscopic system: hadrons, nuclei,

molecules, and even atoms. The rotational excitations of molecules and nuclei have been studied

in more detail. Electronic excitations are much higher than vibrational ones for most so-called

"normal" molecules. Therefore they may be described adequately in the Born-Oppenheimer ap-

proximation. There is no analog of the Born-Oppenheimer approximation for atomic nuclei. Yet

the occurrence of the rotational bands with strong (nearly 100 single particles) E2-transitions

between neighboring states shows the existence of the collective rotation. All nucleons participate

cooperatively into this collective motion with internal degrees of freedom being frozen completely

or partly. The rotational excitations are grouped into rotational bands having states characterized

in simplest case of a rigid axially-symmetric top by the energy (h = 1)

E = I(I + 1)/23, (1)

and quantum number I of the total angular momentum. _ is a moment of inertia. A simplest

non-axial system is a rigid asymmetric top with the Hamiltonian

H = AII_ + A2I_ + A3I_, (2)

where I_ are the projections of tile total angular momentum operator on the BFF (body-fixed

frame) axes c, = 1,2, 3. The rotational constants A_ = 1/(2_) depend on the principal moments

of inertia _. The rotational band of an asymmetric top consists of rotational multiplets, i.e., of

the levels with the same value of the quantum number I. Besides I, these levels are characterized

by the irreducible representations of the group D2 = { 1, _1, _2, _3}, which contains the identity

operator and three 180 ° rotations around the BFF axes _(r) = exp(-irI_). The irreducible

representations of D2 are labeled al, a2, bl, b2. They correspond to the eigenvalues r_ = +1 of the

operators _. The subscripts 1 and 2 label even and odd symmetry levels with respect to the _2

rotation, a and b label even and odd symmetry levels with respect to the _a rotation. Note that

rlr2r3 = 1 is true for each four representations.

_Nl;i P._7_ _i:. _''< _"'-_
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Different methods are used to solve the Hamiltonian (2). As the first step we will calculate

the classical rotation energy E as the function defined in the system phase space (a rotational

energy surface). The phase space of a rotational motion is formed by three Euler angles ¢, _, ¢

and three conjugated momenta p¢,po,p¢. The absolute value of the angular momentum I and its

projection Iz = PC on the z-axis of the space-fixed frame are the integrals of motion. It is suitable

to do the canonical transformation [1] to new conjugated variables I and ql, Iz and q_, I3 and q.

Since qt and qz are cyclic variables, the phase space of a rotational motion is two-dimensional. It

is convenient to map it on the surface of the sphere of the I radius with a center in the origin

of the BFF. The point on the sphere with coordinates 0 and _o determines the orientation of the

vector I in the BFF. The canonical transformation enables us to relate the conjugated variables I3

and q to the angles 0 and _o. For I_ = qt = 0 and an arbitrary q, we have 'cos 0 = 13/1, _o = _ - q.

Thus, the trajectories of the tip of I on the phase sphere are classical trajectories of the system

in its rotational phase space. When the rotational energy is close to A,I 2 or A3I 2, where A1 and

A3 correspond to the smallest or the largest moment of inertia, the classical trajectories are small

ellipses around axes 1 or 3. They represent precession motion around these axes. The trajectories

close to axis 2 with the intermediate moment of inertia are unclosed. They represent unstable

motion. A small deviation from this axis takes a top away from it.

2 Precession motion

Let us begin with classical precession. It is described by the Euler equations

]_ = {H, I_}, a = 1,2,3, (3)

for the projections of the vector I on the BFF axes. In this equation {...} are the Poisson

brackets. Let us introduce the classical concept of stationary rotation axis defined by the three

equations {H, I0,_} = 0. The stationary states I0 are identical with the fixed points of the energy

surface. There are three stationary axes coinciding with the principal axes of a rigid top. For

small precession around axis 1 (I1 ,_ I; I2, I3 << I) Eqs. (3) have the form

]2 =-- -(A3 -- A1)II3,

]3= (A2_ A1)II2. (4)

They describe a harmonic oscillation motion

I2(t) = io_/A3/A1 - 1 coswllt, I3(t) = -iok/A2/A1 - 1 sinwllt, (5)

with small amplitude i0 and frequency

w,, = 2I_/(A2- A,)(A3- A1). (6)

In the BFF, the I vector precess around axis 1 and, in the laboratory frame, the top precess around

the angular momentum I. It follows from the stability condition w 2 > 0 that the precession motion

around the axis with the smallest or the largest moment of inertia is stable and around the axis

with the intermediate one is unstable.

To obtain the energy level structure of a rotational band corresponding to a precession motion

one must quantize this motion. It can be done by different methods.
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Holstein-Primakoff Representation of Angular Momentum Operators. The method developed

by Marshalek for a quantized rotator [2] is based on the one boson realization of angular momentum

operators [3]
II = I- b+b, I+ = I2 + iI3 = b+v/2I- b+b= (I-) +, (7)

in the space of wavefunctions

I (b+)I-K

c21_ = Y_ aK_ 10), (8)
[(I-

where u is the quantum number of a state in a rotational multiplet. The state t 0) corresponding

to K = I is a vacuum state of the boson creation and annihilation operators b +, b. For describing

precession motion we expand the square-root operator in I+ and I_ in the series of a small quantity

fi/I, where fi = b+b is the boson number operator. In the harmonic approximation (n << I), the

Hamiltonian (2) is quadratic in boson operators

I A I
H= A,I 2 +7( 2+ A3)+ I(A2+ Aa-2A,)b+b+-_(A2+ A3)(b+b+bb) •

(9)

The Hamiltonian (9) can be diagonalized by a canonical transformation

b=u +v/3 +, lul=-Ivl =l, (10)

to new boson operators/3 and fl+. The energy of the lowest levels is given by

E1_=AlI(I+l)+wla(n+l/2), n = 0,1,2, .... (11)

The quantum number n describes the precession motion. For the state with n = 0 the wave

function

_,o=lUl-1/2exp(_ub+b+)lO), (12)

localizes near rotational axis 1. It corresponds to the sharply localized orientation of the angular

momentum I along the positive direction of axis 1. Eq. (12) is not the eigenfunction of D2

symmetries. Thus, the harmonic approximation is a "symmetry-breaking approximation." Being

a linear theory it cannot describe tunneling the vector I through a potential barrier separating

two degenerate minima.

Bargmann Representation [4]. Let us consider the complex variable

( = x + iy = e;_cot _, (13)

which is the stereographic projection of a point on the phase sphere with polar angles 0 and

on the plane passing through the south pole. As shown in Ref. [5], it is possible to construct the

SU(2) group representation in the space of the polynomials

I

_(()= X_ aK(!+/_" (14)
K=-I
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The angular momentum operators in this representation have the form

1 "I, =I(+_(1-_2) , I2=-iI(+_(1+(2) , 13=-I+(d-_.

Many problems in nuclear and molecular physics can be treated by this approach [6]. With the

operators (15), the SchrSdinger equation for a top is reduced to the Heine equation [7]. To describe

for example the precession motion around axis 3 we should consider the approximation I _ I<< 1.

Approximate Solution of Reccuvence Relations. This method is based on the approximation of

recurrence relations by a second-order differential equation for high-I values [8]. The eigenfunction

of the Hamiltonian (2) can be written in the form

I

I'_ IMv Z I= alK_,DMK(3), (16)
K=-I

where M and K are the quantum numbers of the operators Iz and /3 respectively. DIe K is

the Wigner function depending on the Euler angles 0. For the coefficients arK,, the three-term
recurrence relation is obtained

PKal,K-2,v + (HKK -- EIv)alKu + PK+2al,K+2,v = O, (17)

where

1 1 (2A3 Ax A2)K 2HK = HKK = _(A1 + A2) + i - - ,

P/,- = HKK-2 = ¼(Ax - A2)[(I - K + 2)(/+ K - 1)(I - K + 1)(I + t'()] '/2.
(18)

By using the small parameter 6 = [I(1 + 1)] -1/2 let us introduce the continuous variable k = K6.

We will treat the coefficients P and H as the smooth functions of this variable. As a result, the

recurrence relation (17) may be rewritten in the form of the Schrgdinger equation

I(I + 1)Hat.(k): E,_,a,,.(k), (19)

with the Hamiltonian

H = [P(k + 26) + P(k)] cos 2166 + i[P(k 4- 26) - P(k)] sin 2_b6 + H(k), (20)

where ifi = -id/dk is the canonically conjugated momentum to the coordinate k.

In the harmonic approximation K << I, Eq. (19) is reduced to the second-order differential

equation

d2a1_- +'2m[E - A,I(I + 1) - V(K)]ah, = 0, (21)
dK 2

in the space of quantum numbers K. The equation describes the motion of the angular momentum

I with effective mass rn = 1/[2(A2-A1)I(I+ 1)] in potential V(K) = (A3-AI)K 2. This harmonic

oscillator has the energy spectrum (11) and the wave function

at,,= _ _(2I+1) Hn R exp 21+1 '
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where w = [(A3- A,)/(A2 - A,)] '/2, and H,_ is the Hermite polynomial. We have again a sharp

localized state with broken symmetry.

The rotational dynamics of real many-body systems is more complicated than that of a rigid

top because of the centrifugal and Coriolis forces. However the harmonic approximation can
be used in this chase to understand the physical nature of the phenomenon under study. The

example is bifurcations in quantum rotational spectra considered in Ref. [9]. In the next section

we consider another problem having a bearing on a precessional motion.

3 Precession Motion around Intermediate Moment of In-

ertia Axis

As we proved above, tile rotation of a rigid top around the intermediate axis is unstable. This is

not a case if a system has additional degrees of freedom apart from rotational ones. We are going

to consider a particle coupled with an asymmetric rigid top. This is the situation of one-electron

Rydberg states in triatomic molecules, such as H20 [10], and rotational bands in odd deformed

nuclei [11].

The Born-Oppenheimer approximation breaks down in the molecular Rydberg spectra. As the

total angular momentum I increases, the rotational levels pass from thmd's case (a) or (b) (the

strong-coupling scheme), where the electronic splitting is large compared with the rotational one,

to the Hund's case (d) (the weak-coupling scheme), where it is small. The model of an isolated j-

complex is widely used for the description of the transition from strong to weak coupling in nuclear

[11] and molecular [12] physics. This approximation is valid if coupling the states of a j-complex

with other Rydberg states is small compared to the Coriolis coupling. The assumption means

that one-particle angular momentum j is an integral of motion. ,'ks I increases, the momentum

j decouples from the molecular ion core and couples to the axis of rotation with the maximal

moment of inertia.
Let us consider the effective Hamiltonian describing the two degrees of freedom: rotational and

one-particle. The rotational part of the Hamiltonian is the kinetic energy of a rigid top. We will

use the self-consistent field approximation for describing one-particle motion. The non-spherical

part of this field can be written in terms of the particle multipole momenta q_u(r) as follows:

V = _]au Qauqau(r) , where A-values are even for the reflection symmetric field. For an isolated

j-complex, the one-particle part' of the Hamiltonian can be expressed in terms of the spherical

tensor operators T_u(j). Thus, the effective ttamiltonian of the system for an isolated j-complex

is algebraic with symmetry SU(2) ® SU(2). We consider this Hamiltonian in the quadrupole

approximation when the components of mean field V with A > 2 are smaller than the ones with

A = 2. It is convenient to write the Hamiltonian in the coordinate system fixed by the principal

inertia axes:

H = __,[A_(I_, - j_,)2 + g,_j]], (23)
ot

where 91 = -g2 = (go sinT)/v/_, g3 = gocos? (--oo < g0 < +oo, 0 ° < 7 < 60°) are the parameters

of the quadroupole part of the self-consistent field, which is diagonal in the considered frame. In
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classical mechanics, the system dynamics is described by the equations of motion:

j_ = 2eo_,[-Az(I z - j_) + .qzlz]j.y,
(24)

where repeated indexes are summed.

The stationary state I0 and j0 of Eqs. (24) is determined by the eight algebraic equations

since the two integrals of motion 12 and j2 exist• Therefore, the stationary state with an arbitrary

orientation does not exist• There are two types of stationary states of Eqs. (24), corresponding to

the lowest level of the rotational multiplets. The three aligned states S_ : I_ = I, jo = j, a = 1,2, 3

with the energy

Eo = A,_(I - j)_ + g,_j_, (25)

have the parallel vectors I0 and j0 aligned along axis a. In the three plane stationary states Soz,

these vectors are placed in the (a/_)-plane. As I increases the sequence of stationary states So and

S_ with the minimal energy for given I leads to the aligned state with the maximal moment of

inertia. The transition from aligned state So to plane one S,_ is accompanied by the bifurcation

of the C2v-type [9] at the critical angular momentum

Ioz:j{l+g°-g_+ [(g2_lgz)2_ (g_=g__)A_]½ (26)
2A. A.(A.- A_)J j"

The index a denotes the axis from which the angular momenta I0 and j0 decouple, while index

denotes the axis to which they approach. Both indexes (a/_) denote the plane, in which these

vectors move for j < I_ z < I < Izo. Another pair of critical momenta determines the similar

bifurcation points in the region I < j. The expression for these values is the same as Eq. (26)

except the sign before a square root. We will consider below only the region I > j in the case

when A1 < A2 < A3, go > 0.

The precessional motion near the stable stationary state is described by linearized set of Eqs.

(24). Four linear differential equations describe two normal modes corresponding to the small

harmonic oscillations of vectors I and j. The frequencies of these modes are obtained as the roots

of a biquadratic equation. We begin our consideration with the precession near the Sl-state in

the weak-coupling limit A,_I >> g,_j. To simplify expressions let us use assumption I>>j. The

precessional mode with smaller frequency w11 (6) represents the precession of the vectors I and

j with different amplitudes. While the I vector circumscribes according to Eqs. (5) an elliptical

cone around axis 1 with the amplitude i0, the amplitude of the j vector is j/I times smaller that

of the I one. Thus, this mode involves the precession of core angular momentum vector R = I-j,

which coincides, in considered approximation, to rigid top precession. Another normal mode with

the frequency wa2 = 2IA1, which is equal to the core angular velocity around axis 1, involves the

uniform rotation of the angular momentum vectors around this axis with identical amplitudes:

I2(t):j2(t)=iocosw12t, I3(t):j3(t)=iosinw12t. (27)

Consequently the momentum R does not participate in this motion.

Now we consider precession near the stationary state $2, corresponding to the central axis. An

orbiting particle stabilizes this state due to the anisotropic (quadrupole) interaction with a top.
I
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The small values of (A2 - A1)/A2 favors stability of the aligned state $2 lowering its energy E2

relative to E1 (see Eq.(25)). To clarify the physical picture we will use the approximations I >>j

and (A2 - A1)/A1 << 1 in describing precessional motion. The smaller frequency

w2, = 2 [(A2- A,)(A3- A2)(I_,- I2)] '/2 (28)

vanishes at the critical momentum I21 (26). The time-dependence of the angular momentum

components for this mode is defined by

Ii(t) = io[A3/A2 - 1]'/2 cosw2,t, (29)

I3(t) = -i0[(A2/A1-1)(121/I s - 1)]'/2sin co2,t,

and j(t) = (j/I)I(t). The interpretation of this result is straightforward. Since the amplitude of the

j-vector is small compared to that of the I ones, the considered mode represents the precession of

the core angular momentum R similar to the rigid top precession (5). Yet unlike the latter, the tips

of vectors I and j move on elliptic orbits stretched along axis 1 if the angular momentum I is close

to/21. This is just a consequence of the bifurcation, which shifts the angular momentum vectors

into the (12)-plane. For another normal mode of frequency 0.,22 = 2IA2, the time-dependence of

angular momentum components has the same form as in Eq. (27).

Thus, we have shown that the precession motion around the axis with intermediate moment of

inertia is possible for a system consisting of a particle anisotropically coupled with an asymmetric

top. The isolated j-complex approximation is used in considering this phenomenon. To examine

it one can solve the classical equation of motion for a particle coupled with an asymmetric top

without this restriction. The equations involve two different time scales: fast particle motion and

slow core rotational motion. After averaging on the fast motion, one can obtain the closed set of

nine equations for components of I and particle angular and quadrupole momenta. The averaged

equations can describe the stabilization phenomenon and the precession around intermediate axis.

This insight into the problem reveals the close relationship of our stabilization effect with that of

the Kapitza pendulum [13]. Another intriguing analogy is the new discovery in planetary science

where it has been shown recently [14] that the Moon stabilizes the chaotic wobble of the Earth's

rotational axis, which is unstable due to orbital coupling with other planets. Thus, without the

Moon, large variations in obliquity resulting from the chaotic wobble might have driven dramatic

changes in the Earth's climate. There are two fundamental distinctions of our problem from

considered above: we deal with the isolated and quantum system.

The above found precessional frequencies are associated with the splitting between the lowest

levels of a multiplet. To obtain this result one must quantize the precession motion. It can

be done by using the Holstein-Primakoff representation. The result for lowest multiplet levels

corresponding to the stationary state S_ is

Et,_ = E_(I)+ co_l(nl + 1/2)+ w_2(n2 + 1/2) (30)

where E, is given by Eq. (25), and nl and n2 are the numbers of bosons in corresponding mode.

The boson operators b+ and bk connect the odd and even with respect to'the C_'-transformation

states inside a rotational multiplet. Consider, for example, the precession around axis 1 in the

weak-coupling limit. In this approximation, any rotational multiplet (I-multiplet) consists of R-

multiplets with the quantum numbers R = I -j +m, m = 0, 1, ...,2j. The levels in R-multiplets
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with the same quantum number R but different I are degenerated. The frequency (6) describing

the precession of the R-vector is equal to the splitting between the lowest levels al and bl (or

a2 and b2) in a R-multiplet. Another frequency w12 = 2IA1 is equal to the splitting between

the lowest levels of adjacent R-multiplets belonging to the same I-multiplet. The situation for

the precession around the intermediate axis is more complicated. According to the precessional

approximation, the lowest states of a multiplet involve two groups of roughly equidistant levels,

which are described by Eq. (30). But a smaller frequency vanishes in a critical point and the

precessional approximation becomes inappropriate in this region. This means the redistribution of

multiplet levels, which provides a method for the identification of the intermediate axis precession

in an experiment.
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